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ABSTRACT: Location-allocation problems, widely applied in managing public 

resources and services, often prioritize utility by optimizing overall efficiency, cost, or 

service coverage when determining facility locations. However, the focus on utility can 

be at the expense of an equitable distribution of benefits among different population 

subgroups. This paper introduces a multi-objective optimization approach to balancing 

utility and equity. We apply this approach to environmental sensor placement in 

Chicago, which indicates its effectiveness in enhancing equitable sensor coverage and 

fostering justice in sustainable smart cities. 
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Introduction 

Location–allocation problems are a class of optimization problems that involve 

determining optimal facility locations and resource allocation to these facilities based on 

certain criteria (R. L. Church, 2005). Classical problems often prioritize utility by 

seeking to optimize some measure of overall efficiency, cost, or service coverage. A 

prominent example is the Maximal Covering Location Problem (MCLP), with the 

objective to maximize the total coverage of demand nodes given a limited number of 

facilities (R. Church & ReVelle, 1974). However, the focus on utility may not always 

ensure and, in fact, often conflicts with equity: certain individuals or demographic 

groups may not receive a fair share of benefits from the facilities (Meyer, 2008). This 

can be particularly pertinent considering the broad applications of location-allocation 

problems in managing public resources and services. 

Research has advocated for incorporating equity considerations into the formulation of 

location-allocation problems, with a predominant focus on equal accessibility (Li et al., 

2017; C. H. Wang & Chen, 2021). F. Wang & Tang (2013), for example, introduce the 

Maximal Accessibility Equality Problem (MAEP) that minimizes the variance in 

accessibility index. While useful in promoting equal spatial opportunities for reaching 

facilities, the focus on accessibility does not address disparities in the benefits provided 

to different population subgroups. An alternative approach is presented in Robinson et 

al. (2022), which uses multi-objective optimization to balance coverage across a 

selected number of demographic subgroups. However, this approach models the 

coverage of each subgroup as a separate objective, potentially leading to computational 

intensity as the number of subgroups increases. 

The purpose of this paper is to introduce a multi-objective optimization approach to 

balancing utility and equity of coverage among different population subgroups, with a 

specific focus on the MCLP–a widely applied location-allocation problem. Different 

from Robinson et al. (2022), we use a measure to summarize inequality among all 

subgroups, eliminating the need for an extensive number of defined objectives. Our 
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method is evaluated through a case study of environmental sensor placement in 

Chicago, which demonstrates its effectiveness in providing more equitable solutions for 

sensor coverage compared to those achievable through the MCLP. 

Methods 

We extend the classical MCLP to incorporate an additional objective of minimizing 

inequality through multi-objective optimization. The following parameters and variables 

define the optimization model. 

Input parameters: 

I = set of all demand nodes (indexed by i), 

J = set of all candidate facility sites (indexed by j),  

K = set of all population subgroups (indexed by k),  

p = number of facilities to locate, 

wik = demand of subgroup k at node i, 

aij = coverage of node i by candidate site j. 

Decision variables: 

𝑥𝑗 = {
1,  if candidate site 𝑗 is selected,

0, otherwise,
 

yi = coverage of node i. 

Coverage modeling 

The coverage parameter aij is a critical input, adaptable to different applications through 

discrete and continuous models. Let dij be the Euclidean distance between node i and 

candidate site j, s be the maximum effective coverage distance of a site, and t be a 

distance decay constant. In the discrete model, aij = 1 if dij ≤ s, and 0 otherwise, 

indicating binary coverage. The continuous model, 𝑎𝑖𝑗 = 𝑒−𝑡𝑑𝑖𝑗 𝑠⁄ , accommodates 

partial coverage with a smooth transition based on distance. 

Measures of inequality 

There are different ways of examining social inequality in the literature. This study 

explores three commonly used measures—relative range, variance, and Theil index—

which will then be used as objective functions in our optimization model. To compute 

these measures of inequality, we define the percent coverage for each subgroup k as  

𝑟𝑘 =
∑ 𝑤𝑖𝑘𝑦𝑖𝑖∈𝐼

∑ 𝑤𝑖𝑘𝑖∈𝐼
 ,  (1) 

which illustrates the extent to which the sitting facilities benefit a subgroup, normalized 

by its population. The average percent coverage across all subgroups is denoted as �̅�. 

The number of subgroups is denoted as |K|. The three measures of inequality considered 

are described below. 
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(1) The relative range is the maximum difference between the percent coverage of any 

two subgroups (max
𝑘∈𝐾

𝑟𝑘 − min
𝑘∈𝐾

𝑟𝑘), normalized by the average coverage (�̅�): 

𝐸 =
max
𝑘∈𝐾

𝑟𝑘−min
𝑘∈𝐾

𝑟𝑘

�̅�
 .  (2) 

(2) The variance is the average of the squared differences between each subgroup's 

percent coverage and the average coverage (�̅�): 

𝐸 =
1

|𝐾|
∑ (𝑟𝑘 − �̅�)2

𝑘∈𝐾  . (3) 

(3) The Theil index, introduced by economist Henri Theil, is one of a family of entropy 

measures used to quantify various aspects of inequality (Theil, 1967): 

𝐸 =
1

|𝐾|
∑

𝑟𝑘

�̅�
ln

𝑟𝑘

�̅�𝑘∈𝐾  .  (4) 

All three measures of inequality have a minimum value of 0 that indicates complete 

equity. In other words, minimizing the values of these measures corresponds to 

maximizing equity. 

Multi-objective optimization 

An optimization model is formulated to maximize both utility and equity by 

maximizing the total coverage across all subgroups (Eq. 5) while minimizing a measure 

of inequality (Eq. 6):  

max           𝑈 = ∑ ∑ 𝑤𝑖𝑘𝑦𝑖𝑖∈𝐼𝑘∈𝐾  , (5) 

min           𝐸 ,    (6) 

subject to 𝑦𝑖 = max
𝑗∈𝐽

𝑎𝑖𝑗𝑥𝑗      ∀𝑖 , (7) 

                  ∑ 𝑥𝑗𝑗∈𝐽 ≤ 𝑝 ,  (8) 

                  𝑥𝑗 ∈ {0,1}     ∀𝑗 ,  (9) 

                  0 ≤ 𝑦𝑖 ≤ 1     ∀𝑖 .  (10) 

Constraints in Eq. 7 state that, for each node i, the coverage is equal to the maximum 

coverage value across all candidate facility sites. This differs from the classic MCLP, 

where each node is considered either covered or not covered. In our formulation, we 

accommodate partial coverage, which aligns better with practical applications. Eq. 8 

specifies that the total number of selected facility sites cannot exceed the specified 

number of facilities to be located. Constraints in Eqs. 9 and 10 specify the range of 

decision variables.  

Solving this optimization problem is expected to yield a set of Pareto-optimal solutions, 

where no one objective can be improved without compromising the other. While, like 

many other location-allocation problems, it can be challenging to find optimal solutions 

using exact methods, this problem can be effectively solved with heuristic methods such 

as the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb & Jain, 2014), as 

applied in our subsequent computational experiments. 
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Experimental Results 

We implement the proposed approach to identify the optimal locations for air quality 

sensors in Chicago. Sensor networks are pivotal components of sustainable smart cities, 

and Chicago has been actively involved in deploying environmental sensors through 

initiatives such as the Array-of-Things. Ensuring equitable sensor coverage is essential 

for promoting environmental justice and fostering an inclusive and green urban future. 

Figure 1 illustrates the Pareto-optimal solutions resulting from our method, indicating 

reduced coverage inequality compared to those from the MCLP. Notably, when using 

continuous coverage, it is potential to derive a set of optimal solutions with more 

equitable coverage without degrading much of the utility (total coverage) achievable 

through the MCLP. 

 

Figure 1: Optimal solutions resulting from MOO (multi-objective optimization) 

(marked by circle symbols) and the MCLP (marked by cross symbols). 
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Conclusions 

This paper introduces a multi-objective optimization approach to balancing utility and 

equity in location modeling and demonstrates its effectiveness in selecting optimal 

locations for environmental sensors. While our focus is on the MCLP, the way of 

incorporating measures of inequality in model formulation can be extended to other 

location-allocation problems, such as the p-median problem. 
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